Can you take creatine without working out?

julzbro

Ex-Bluelighter
Joined
Dec 27, 2008
Messages
201
What would happen if you loaded creatine mono and took it for a few weeks without actually workng out?

Would you still get the creatine bloat? would it help you gain weight?
 
Would you still get the creatine bloat?

Working out won't affect whether or not creatine causes water retention. Personally, I never noticed any 'bloat'.

would it help you gain weight?

No. Creatine just increases endurance slightly during intense anaerobic exercise (such as heavy weight lifting), which can allow you to get a slightly better workout, helping build muscle faster. Without lifting weights, it won't have any effect on muscle (or fat) gain/loss.
 
You can do it and you will gain weight. A friend of mine said it always made him hungry and angry- so possible test releaser as well? im not sure
 
You can do it and you will gain weight. A friend of mine said it always made him hungry and angry- so possible test releaser as well? im not sure

The weight your friend gained was not from the creatine, and it does not have any effects on your mood.
 
Id say yes. Creatine causes water retention. U wont notice much of a difference if ur not training but if u do train boy u will get massive:) U would want sum muscles and water to add bulkiness.
 
PPl say that creatine will help ya in an iq test. i just stay on it year round whether lifting or not.
 
Yes creatine has received attention as a nootropic supplement. Also as an anti-ALS/other neurodegenerative disorder medicine, with mixed results. So lots of people are now taking it regardless of their exercise regimen.

I'd be careful about it though, you could start gaining weight if you are not actively exercising.

I personally don't like how it makes my stomach feel, plus the extra few pounds bothers me more than anything. Also I swore that when I took it for 6 months daily a few years back my hair had receded slightly up my head! Fortunately it has kept still since...
 
wtf. Yes you will gain weight. You are likely to hold maybe 2/3 pounds of extra water. If you are not exercising it will not help you gain fat or muscle.

As far as I'm aware there is no research that suggests it increases testosterone levels so it wont make you "more aggresive" and will not contribute to hair loss.
 
its being investigated as a nootropic oddly enough

but I don't think it has any significant cognitive effects
 
wtf. Yes you will gain weight. You are likely to hold maybe 2/3 pounds of extra water. If you are not exercising it will not help you gain fat or muscle.

As far as I'm aware there is no research that suggests it increases testosterone levels so it wont make you "more aggresive" and will not contribute to hair loss.


okay, say I take it and only work out my abs and booty, would I gain weight anywhere else??? I already bought the stuff but my fear is it making me bulky instead of simply putting on a couple lbs where I want it
 
Creatine doesn't add muscle it just allows you to train longer which aids in building muscle. Steroids aren't wouldn't even do anything really If you weren't training and eating right
 
Creatine doesn't add muscle it just allows you to train longer which aids in building muscle. Steroids aren't wouldn't even do anything really If you weren't training and eating right

So it will only build the muscles im working out, correct???
 
So it will only build the muscles im working out, correct???

Creatine will volumize muscle tissue, obviously it will show preference to those muscles trained, as thats how muscle hypertrophy works, there will be some water retention..
The main benefit of creatine is that it enables you to complete extra reps... Below is an article explaining the mechanism of creatine:


What is creatine and how does it work? From MASS..!!
Creatine is, in chemical terms, an organic acid with a nitrogen containing group (NH2) attached to it. Quite impractical definition isn’t it? In more practical terms, it is a molecule which aids cells in their energy requirements through the (re)formation of an important energy carrier: Adenosine TriPhosphate (ATP). ATP is often referred to as the “energy currency” of cells, as it provides the energy for a wide variety of biochemical reactions which take places within them.

Of particular interest for most of you reading this, is its role as an energy supplier for muscle contraction. Muscle contraction can be described by the so called “Sliding Filament Model”, as muscle contraction is in essence the sliding of filaments (thick and thin) over each other. This model is illustrated in the figure below, in which you can observe a sarcomere (the basic contractile unit of a muscle fibre) in two states, the top one being relaxed and the bottom one being contracted.


The basic contractile unit of a muscle fibre: a sarcomere.
So basically what you see are the blue and pink/reddish filaments, actin and myosin respectively. Myosin ‘lies’ in the center and actin is tightly attached to each end of the sarcomere onto the Z-disks (but absent in the center). In a relaxed state, the myosin and actin have a low degree of overlap, however, when contracted the two have a high degree of overlap. This is due to the two sliding over each other (hence the ‘Sliding Filament Model’) during contraction as a result of the myosin heads ‘walking’ over the adjecent actin filament, in essence pulling them to the center. This walking consumes energy and the energy is obtained from the hydrolysis of ATP. Each step a myosin head takes is fueled by hydrolyzing one molecule of ATP. And this is exactly why creatine is interesting.

Our muscles have a small pool of ATP, which is generated during rest so it can be utilized during action. However, this pool would rapidly ‘dry out’ if the body had no means of regenarating it quickly. When ATP is hydrolyzed energy is released, and two products remain: Adenosine DiPhosphate (ADP) and inorganic phosphate (Pi). Now, one of the ways, and in particular a quick one too, to regenerate ATP from the ADP, lies in the Creatine Phosphate (PCr) the cell contains. The PCr pool serves as a buffer, as it can donate its Pi to ADP to regenerate ATP again. Another product of the reaction is creatine. So, to wrap this specific reaction up into one formula, the Creatine Kinase (CK) reaction read as follows :

H+ + PCr + ADP ↔ Cr + ATP (of course Creatine is not required to hydrolyze ATP, but this is the reaction as catalyzed by the Creatine Kinase enzyme, maintaining equilibrium)

The bidirectional sign means the reaction is reversible: it can go both ways depending on certain conditions. Without going into much detail, the main determinant concerning the direction in which this reaction goes is the concentration of the substrates and products. Now, when ADP increases, as for example during exercise by hydrolysis of ATP, this reaction is favored into the right direction. When ATP increases again, equilibrium will eventually be reached.

The ATP to ADP ratio is, under normal conditions, very high. The ATP storage itself is quite small and therefore the muscles heavily rely on the quick regeneration of ATP from ADP (for which the catalysation by CK is perfectly adequate in doing so). The result of creatine suppletion is that it increases the total muscle creatine content, including phosphorylated creatine, resulting in a larger buffer to quickly regenerate ATP from ADP when its hydrolyzed during muscle contraction. This is the core ‘function’ on how creatine enhances performance.

In addition, it also exerts its effects by enhancing mitochondrial respiration and facilitating intracellular energy transport in which the PCr functions as an energy transporter from the mitochondria to the cytosol (Cr getting rephosphorylated in the mitochondria utilizing ATP derived from oxidative phosphorylation). Furthermore, it affects the expression of several genes, of which some are involved in skeletal muscle hypertrophy.

Measurement of the protein content of a wide variety of protein kinases in skeletal muscle after short-term Creatine Monohydrate (CrM) supplementation show, among others, upregulation of: p38 MAPK, ERK and Akt. Activation of the MAPK/ERK pathway can lead to phosphorylation of p70S6K (also one of mTORC1’s downstream effectors) which can increase gene transcription. Akt on the other hand works through the canonical PI3K/Akt/mTOR pathway. This could be another mode of action through which creatine positively influences protein synthesis.

Moreover, creatine induces proliferation and differentiation of satellite cells in vitro. Indeed, it has been shown in a clinical trial that creatine supplementation enhances the training-induced increase in satellite cell and myonuclei number in skeletal muscle. However, the exact biochemical mechanism through which creatine does so remains to be elucidated.

Another proposed mechanism is that of creatine being an ‘androgenic aid’, solely based on a single study showing a (testosterone indepedent) increase of dihydrotestosterone (DHT). DHT is the product of testosterone by 5α-reduction and has a higher potency in terms of androgen receptor activation. Now, this proposed mechanism of action is problematic in a multitude of ways. DHT is a 3-keto 5α-reduced steroid, and as most of these steroids, the enzyme 3α-HSD is happy to reduce the steroid on C3 resulting in a useless metabolite. One of the main sites of action of this enzyme is (don’t be shocked): skeletal muscle. So DHT gets metabolized rather quickly in the tissue where it should work according to this proposed mechanism. Now we aren’t done yet: skeletal muscle lacks significant amounts of any of the 5α-reductase isozymes. So there isn’t much conversion going on in the respective tissue to begin with. Surely the DHT diffuses from the serum to the skeletal muscle, yet these concentrations are quite low (around the 1 nmol/l mark). All in all, it is highly unlikely that this is one of the modes of action.

Finally, I would like to discuss its effects on serum myostatin, since creatine appears to decrease serum myostatin and it is currently another hot theory. For those of you who are unaware, myostatin is a protein involved in the regulation of muscle hypertrophy and hyperplasia. Now, I’m willing to go as far as to believe that this entire decrease measured in serum is solely the result of its decrease in skeletal muscle (which isn’t even a rare assumption I must admit, since its main site of synthesis is skeletal muscle). When looking at the big and bulky myostatin null mice in the original study wherein the protein was discovered (then still dubbed ‘GDF-8′) by McPherron et al. in 1997, it seems tempting to believe that any reduction in myostatin translates to gains. However, when closely examining their results and mechanism of action of the protein, I would hold back with drawing that conclusion. For starters, the myostatin null mice had NO myostatin, which makes it difficult to extrapolate the results to various concentrations. Nevertheless, this is a useful way to examine its biological function. As it seems in the myostatin null mice, its main function is the inhibition of myoblast proliferation and differentiation. Indeed the mouse also underwent significant hyperplasia. Myostatin therefore seems to put a brake on hyperplasia, as it does not occur under physiological conditions. Of course it also influences hypertrophy, but be it to a lesser extent. It mildly decreases Akt phosphorylation and some of its downstream substrates. Furthermore it upregulates a ubiquitine ligase (atrogine-1) via FoxO1, thus increasing protein breakdown. Nevertheless, when comparing the cross sectional area (CSA) increases of the mice both due to hyperplasia and hypertrophy, hyperplasia seems to take the crown. Although it would be stupid to say this mechanism of action isn’t involved in creatine’s mode of action, it is far from certain to conclude it actually is a significant mode of action.

Creatine pharmacokinetics
When creatine is orally ingested, it gets absorbed from the gastrointestinal tract. The body has creatine transporters located throughout the intestinal wall in order to achieve this (creatine can not diffuse past the cell membranes, nor is there any significant paracellular movement). In order for the body to absorb it however, the creatine must be dissolved. Indeed, when creatine absorption by solution or lozenge is compared, the area under the concentration-time curve of the latter is significantly lower. Therefore, make sure you take in creatine with ample water.

After passing the intestinal wall it hits the bloodstream going through the hepatic portal and into the circulation. From the circulation it gets absorbed by a variety of tissues, e.g. brain, muscle and even your balls. Nevertheless, more than 95% of a body stores of creatine is found in skeletal muscle tissue. The absorption into the cells is also transporter-mediated. This plasma membrane transporter has an estimated Michaelis-Menten constant (Km) of around 15 to 77 µM. So when the creatine plasma concentrations are around 15-77 µM, the transport into the cell is half of its maximal influx. This has some practical implications for ‘creatine loading': maintaining creatine plasma concentrations well above this mark to ensure maximal creatine uptake by the muscle. This is achieved by taking roughly around 15 gr spread over three times a day.

Finally, after absorption from the gastrointestinal tract into the bloodstream and its subsequent absorption by the cells (mainly muscle cells), its clearance remains to be discussed. Since creatine requires a transporter to cross cell membranes due to its polarity, and there is no transporter emitting the substance out of the cells, it is effectively trapped within. Creatine therefore leaves the cells in the form of creatinine. The formation of creatinine from creatine is spontaneous and is NOT catalyzed by any enzym or accelerated by whatever process whatsoever. Nor does its phosphorylated state significantly affect its rate of degradation. Only pH and temperature affect its rate of degradation. Since both these factors are fairly constant within the cells, the degradation is constant. This leads to the conclusion that the amount of creatine degraded into creatinine is linearly proportional to the amount of creatine. Contrary to popular believe, this is not accelarated by lifting weights or any other activity (hence it makes no sense to only supplement it on training days). Additionally, any creatine not absorbed by the cells is cleared by the kidney (a part of it reabsorbed tho), and so is creatinine.

How should creatine be supplemented?
In essence, the ergogenic effect of creatine supplementation is due to its effect on muscle creatine stores. Hence, a supplementation schema should focus on: 1) saturating the muscle tissue with creatine as fast as possible, 2) maintaining the saturated level of creatine in the muscle tissue. As evidenced by the Km of the CRT as presented in the previous section, it probably does not take that much to saturate it. However, a single dose of creatine will not elevate the plasma concentration for the entire day, so multiple doses are required, spread throughout the day. The traditional loading schema of 15-20 gr per day, as also applied in literature, seems adequate in achieving this, spreading it out over 3-4 dosages a day. Saturation is achieved after only a couple of days, after which a maintenance dose can be used. Since literature reports an average breakdown of creatine to creatinine of approximately 2 gr per day, 2 gr per day is supposed to be enough. However, bodybuilders are bigger than the regular folks recruited in literature. Carrying around all that extra muscle mass also implies carrying around more creatine. Since the total amount of creatinine broken down per day is directly proportional to the amount of creatine in the body, bodybuilders will probably breakdown somewhat more. Additionally, of course, we are supplementing creatine and thus increasing our total creatine amount as well. Finally, creatine is dirt-cheap and most distributors supply it with a scoop of 5 gr. This leads me to the recommendation of just maintaining on 5 gr per day, instead of some more ‘difficult’ number such as 3 or 4 gr (which could be perfectly fine as well).

Now, one question remains: does timing matter? Considering there is a saturation limit, and my recommendation of the maintenance dose is on the extremely safe side of being sufficient, the answer is: no. However, there recently has been one study, conducted by Jose Antonio and Victoria Ciccone (published of course in Antonio’s JISSN), which suggests it does. Antonio and Ciccone compared the effect of supplementing 5 gr of creatine pre and post workout on strength and body composition. The outcome was statistically significant between both groups, and the winner was: post workout. Now, I would like to note that there obviously is a difference going on there. However, I wonder if the same result would be observed if both groups applied a loading phase. It might have been that the post workout group reached saturation faster than the pre workout group, and thus reaped the benefits of it earlier. Nevertheless, this makes a case for taking your creatine after your workout
Conclusion
Now you’re aware of the biochemistry of creatine, you can reason about it. Loading phases, maintenance dosage, supplementing it on the days you’re not training, even the particular dosage you’re using: it all makes sense in the context of its biochemistry.
 
Did you compile that post gf? I don't see a source like you normally leave. If you did, you have 2 things, 1 an excellent mind and a lot of knowledge.
2 - too much time on your hands lol
 
I sell C4 cellucore as a sales rep for a living, and i've also worked for amino fuel which has creatine hcl i believe.... and all i can say is I notice that creatine seems to help me in a huge way when im taking it.... like mentally , as well as physically ... I can skateboard longer and ollie higher , but mostly just get out of bed and not be fatigued --- im 28 , but i've been pretty much using all sorts of drugs since maybe ten or more years ago; considering that i am in great shape but obviously a little outta my prime condition so to speak... which is funny because as a salesmen of preworkout powders I draw upon my knowledge of biology / pharmacology, obtained from places like here to reduce harm and increase highs. Creatine and beta-alanine as well tons of glutamine seem to really do wonders for a person shot-out from uppers / mdma/ shroooms / opiates/ etc .etc. I believe they serve as nootropics , sort of feeding the CNS / muscular systems in a very natural manner.
 
If you're a vegetarian creatine seems to be possible to boost brain function quite significantly
 
Did you compile that post gf? I don't see a source like you normally leave. If you did, you have 2 things, 1 an excellent mind and a lot of knowledge.
2 - too much time on your hands lol

Hi nolys its from MASS.. http://muscleandsportsscience.com/updates-updates-and-more-updates-but-i-need-opinions/

Its a web-site about to undergo substantial changes, run in part by Peter Van Mol, otherwise known as Big Cat... Some of you will remember him from Steroid.com, and more recently from GH15.... He is a Bio-chemist, whom formerly associated with Karl Hoffman... Big Cat is responsible for most of the unbiased research on AAS and ancillaries currently going around most steroid boards today...
I suggest people check it out, and keep a watch in the coming months, if you are into science of AAS and bodybuilding, that will soon be the place to be...

Like them on Facebook: https://www.facebook.com/muscleandsportsscience


Too much time on my hands... I wish..!! Spent most of the day studying and watching AUT students practice medical scenarios, got called out of bed to a cardiac arrest at midnight and spent 56 mins doing CPR, piss wet through, had to wash uniform before my shift tonight....lol
 
Top