plumbus-nine
Bluelighter

They say it's an 'integrated stress response' inhibitor which reverses the effects of elF2 phosphorylation and inhibits elF2alpha phosphorylation induced stress granule formation. Can anybody translate this to a more plain English?
Edit: Lol, overlooked that they provide some more. Feel free to remove or modify if whatever search engine you're using finds somewhat you don't want - DuckDuckGo doesn't.
Integrated stress response inhibitor. Potently reverses the effects of initiation factor 2α (eIF2α) phosphorylation, IC50=5 nM1. Enhances spatial and fear-associated learning in mice and enhances cognitive function. Mechanism of action involves activation of eiF2β. Suppresses ER stress-induced inflammatory gene expression. Potently attenuates amyloid β-induced neuronal cell death (12.5-25 nM) with no effect on amyloid β production. Reverses hippocampal-dependent cognitive deficits induced by traumatic brain injury in two different injury mouse models.
The integrated stress response (ISR) is a stress response system in that down-regulates protein synthesis and upregulates expression of certain genes, in response to internal or extracellular stresses (for example, hypoxia, low glucose, viral infection, oxidant stress). The result is either the expression of genes to synthesize proteins that fix the damage in the stressed cell, or a cascade of events leading to cellular apoptosis.[1]
EIF-2 protein kinases play an important role in the ISR, as they respond to stress signals by phosphorylating the alpha-subunit of translation initiation factor 2 (eIF2), which modulates gene expression further. In normal cells, eIF2 is an important factor for translation. Phosphorylation of eIF2 converts eIF2 from a substrate to a competitive inhibitor of its nucleotide exchange factor, eIF2B, disrupting protein translation. The phosphorylated eIF2 (P-eIF2) also controls the formation of stress granules (SGs) which play a role in regulating translation of stress effector proteins.
These mechanisms are important for a healthy immune response to protect cells against damage. However, an overactive or malfunctioning ISR has negative consequences and has been linked to neurodegeneration, cognitive disorders, diabetes, and metabolic disorders.[2] Furthermore, the ISR is activated during ageing and contributes to a number of age-related cognitive issues.
ISR inhibitors were hypothesized as being usable to treat ISR-mediated neurodegeneration, but potential candidate compounds were linked to adverse effects due to limiting the effectiveness of the ISR, thus limiting immune response, and rendering the cell incapable of repairing damage.[3] [4]
Doesn't sound too bad but guess it's from rat experiments as usual.